

Occupational Safety, Health, and Environment (OSH&E) Program Department of Computer Science and Industrial Technology Southeastern Louisiana University SLU 10847 Hammond, LA 70402

May 20, 2009

Dear OSH&E Industrial Advisory Committee Member,

On behalf of Southeastern Occupational Safety, Health, and Environment (OSH&E) Program, we would like to give our sincere appreciation for your involvement in the OSH&E Industrial Advisory Committee as well as your participation in the meetings and discussion.

Enclosed please find the report of the OSH&E Industrial Advisory Committee meeting that was held on April 24, 2009. Please feel free to let us know should you have your questions and comments!

Our first meeting for the upcoming 2009-2010 academic year will be held as part of the Annual Department Industrial Advisory Committee Meeting. The meeting is usually scheduled sometime in October at the Hammond campus. A formal letter will be sent to you when the meeting date and venue are determined.

Thank you very much for your consistent contribution to the program!

Sincerely

Dr. Lu Yuan

Ms. Dorinda Folse OSH&E IAC Chairperson

Mr. Lawrence Mauerman Coordinator, OSH&E

Dr. Lu Yuan Assistant Professor

### OSH&E Program Industrial Advisory Committee April 24, 2009 Meeting Report by Ms. Dorinda Folse and Dr. Lu Yuan

The last Occupational Safety, Health, and Environment (OSH&E) Industrial Advisory Committee (IAC) meeting was held from 11:30 AM to 2:30 PM on April 24, 2009 in Anzalone Hall 214 at the Hammond campus. (Please see the attached example photos!) The attendees include twelve of the seventeen OSH&E IAC members (Appendix A with updated information). Ms. Dorinda Folse, the OSH&E IAC Chairperson, hosted the meeting. Mr. Lawrence Mauerman, Drs. Ephraim Massawe and Lu Yuan, the three full-time faculty members of OSH&E program, were the co-hosts. Two current OSH&E students, Daniel Rice and Jake Valenti, were present. Drs. Peter Territo and Cris Koutsougeras attended the meeting as well. Special guests include Dr. Michelle Hall, Director of the University Institutional Research & Assessment Office, and Lenny Young, DEQ (Louisiana Department of Environmental Quality) Ombudsman. Absent were Steven Pereira, Richard Matherne, James Kerr, Don Steadman, and Michael Gautreaux.

Appendix B includes the agenda of the meeting, which started with the welcoming and introduction from Ms. Dorinda Folse. Ms. Folse provided an update on OSHA. She informed the committee that while there was still no Assistant Secretary of Labor that Jordan Barab had been appointed as a Deputy Assistant and was currently the Acting Assistant Secretary of Labor. She said that by all indications there would be an increased emphasis on enforcement and there is anticipation that more compliance officers would be hired nationwide as well as in Louisiana. The attendees then introduced themselves and a short break was held for lunch.

When the meeting resumed, items on the agenda were discussed in order. Under old business, Mr. Mauerman first reported the OSHE course objective development. A sub-committee consisted of OSH&E full-time faculty members, adjunct instructors (Steven Pereira, Richard Matherne, James Kerr, and Wayne LaCombe) and Rick Saizan, conducted two meetings on Mar.13 and Apr.3 to review and modify the existing OSHE course specification sheets using Bloom's Taxonomy. The sub-committee members focused on the examination of course objectives, and also reviewed other course materials including textbook, course syllabus, final project guideline, assignments, and exams. As a result, the OSHE course specification sheets were updated (Appendix C).

Dr. Yuan then explained the development of rubric for assessing OSH&E program outcomes (Appendix D). As recommended by ABET, the rubric uses a set of categories developed from the performance criteria to define and describe progression toward meeting important components of work being completed, critiqued, or assessed. Such a development will be extremely helpful in an objective evaluation of the program. The next step would be to collect relevant data and information to testify the rubric.

In terms of the OSH&E website (Appendix E), more information about the program including program brochure, OSH&E faculty (both full-time faculty members and adjunct instructors), OSH&E Industrial Advisory Committee, internship information, and scholarships has been added. The ASSE Greater Baton Rouge Chapter has helped to rebuild the ASSE Southeastern Student Section website, which will be live very soon. A call for a short biography was made. As

of now, eight bios have been received. It is greatly appreciated that other committee members could send the bios to Dr. Yuan ASAP.

Next, Dr. Yuan presented the results of OSH&E program questionnaire that was distributed in the last two quarterly meetings. A total of nine completed questionnaires were received and analyzed. Overall, the committee members felt positive about the OSH&E program. There are comments and suggestions such as the program should add environmental aspects, emphasize communication skills, include business accounting fundamentals, build research labs, and acquire industry support, etc. It is also suggested that the full-time faculty members gain more industry experiences and achieve better command of language.

The last item under old business was the updated OSH&E curriculum sheets for advising (Appendix F). As explained in the previous meetings, these new sheets represent the approved change on the OSH&E AAS and BS curricula for the upcoming academic year.

Based on the recommendations from the committee members, a list of professional electives from other disciplines including industrial technology, accounting, criminal justice, health studies, and biostatistics, was proposed to be included in the updated OSH&E BS curriculum. Mr. Mauerman presented those courses to the meeting attendees and asked for feedback. Mr. Alan Rovira suggested including the most current technology trends and needs into the consideration of new courses within OSH&E.

Dr. Territo presented the internship update. He explained some of the important items in the internship course package that were sent out to the committee members during the semester.

Mr. Mauerman announced to the group that an application for the James A. Oppold Fund from the ASSE Foundation has been submitted. This fund provides grants up to \$3,500 for universities & colleges seeking ABET Accreditation of Safety & Health Programs. The decision will be made in the end of June. Dr. Yuan added that based on the ABET requirements, the tentative plan was to submit the ABET self-study by the end of 2009 and request that the site visit be completed in September 2010.

Regarding the industrial support, Mr. Mauerman and Dr. Yuan shared the experiences and feelings of the site visit to the Safety Technology Program at Nicholls State University with the meeting attendees. A list of organizations, agencies, and resources where potential sponsorship can be achieved were provided by the committee members, including AGC, ABC - Chapters of N.O. & B.R., GBRIA, GNOIC (round table), benefactors/alumni, and companies. Some members also suggested that the OSH&E program should target industries including tourism/motion pictures and logging.

A recognition certificate was awarded to each committee member at the end of the meeting. The great support and contribution from each member to the program were very much appreciated. Given that the foundation work for the program accreditation has been built, it was suggested that the future OSH&E IAC meetings be conducted on a semi-annual or semester basis. The meeting attendees agreed with this proposal. The meeting adjourned at 2:30 PM.









### Appendix A OSH&E Program Industrial Advisory Committee

#### **Members**

Steven P. Pereira, CSPTelephone: 225-665-6000Presidentspereira@professionalsafety.comProfessional Safety Associates, Inc.1027 North Range AvenueDenham Springs, LA 70726

#### Richard Matherne, CIH Telephone: 225-963-7424

Home: 36102 Alligator Bayou Road rnmatherne@hotmail.com Prairieville, LA 70769

Office (retired): Senior Industrial Hygiene Advisor/Product Stewardship Albemarle Corporation Health & Environment 451 Florida Street Baton Rouge, LA 70801-1765

### Don Jones PE, CSP, SGE, MBA

8000 GSRI Ave. LBTC, Building 3000 Baton Rouge, LA 70820 Telephone: 225-578-4095 djonesEHS@gmail.com

#### Wayne LaCombe, MSPH, CSP

Telephone: 225-977-4108 wayne.m.lacombe@exxonmobil.com

MOH – Industrial Hygiene ExxonMobil, Baton Rouge 4999 Scenic Hwy CPWO # 1423 Baton Rouge, LA 70805

#### William J. (James) Kerr, CSP

#### Telephone: 225-757-0870

Health & Safety Manager James.Kerr@eaglered.comEagle Environmental Services, Inc.18369 Petroleum Dr.Baton Rouge, LA 70809

#### Dorinda Folse, OSHA Area Director Telephone: 225-298-5458

Occupational Safety & Health Administration 9100 Bluebonnet Centre Blvd, Suite 201 Baton Rouge, LA 70809

## Beth Inbau, President & CEO, South Louisiana Chapter (New Orleans)

Telephone: 504-888-7618

National Safety Council beth@metrosafety.org P.O. Box 858, Kenner, LA 70063-0858 4713 Utica Street, Metairie, LA 70006

| Rick Saizan, Safety Council LCA Telephone: 225-282-3291<br>8180 Siegen Lane rsaizan@safetylca.org<br>Baton Rouge, LA 70810                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chris Buzbee, President, ASSE New Orleans Chapter Telephone: 504-388-8088<br>Office: Bollinger Shipyards, Inc. cabuz98@cox.net<br>P.O. Box 250<br>Lockport, LA 70374                                                                           |
| Lance Roux, CSP, President, ASSE Greater Baton Rouge ChapterTelephone: 225-247-7011SafetyPro Resources, LLClroux@safetyproresources.com8550 United Plaza Blvd, Suite 702Baton Rouge, LA 70809                                                  |
| Alan J. Rovira, Senior Industrial Hygienist<br>Lockheed Martin Space Systems Company<br>Michoud Assembly Facility, Dept 3732<br>P.O. Box 29304<br>New Orleans, LA 70189Telephone: 504-257-0881<br>Alan.j.Rovira@maf.nasa.gov                   |
| Don Steadman, CWCP, CPSITelephone: 225-413-5626BREC Senior Risk Managerdsteadman@brec.org6201 Florida Blvd.Baton Rouge, LA 70806                                                                                                               |
| Buddy Mincey Jr., Safety Director<br>Volks Construction<br>10983 Hwy. 1033<br>Denham Springs, LA 70726Telephone: 225-673-5302<br>buddy@volksconst.com                                                                                          |
| Kathleen R. Loup, Safety Director<br>River Parish Contractors, Inc.Telephone: 985-536-1425<br>kathleen.loup@rpcontractors.comP.O. Box 2650<br>Reserve, LA 70084Felephone: 985-536-1425<br>kathleen.loup@rpcontractors.com                      |
| Alex Appeaning, PhD (on behalf of Harold Leggett, PhD)Telephone: 225-919-3951Deputy Secretaryalex.appeaning@la.govDepartment of Environmental Qualityalex.appeaning@la.govOffice of the SecretaryP. O. Box 4301Baton Rouge, LA 70821-4301block |
| Michael Gautreaux, CSP Telephone: 985-448-4740<br>Instructor, Safety Technology michael.gautreaux@nicholls.edu<br>Department of Applied Sciences<br>P.O. Box 2148<br>Nicholls State University<br>Thibodaux, LA 70310                          |

Michael A. Page, CSP Telephone: 225-231-0874 Director of Safety & Loss Prevention mpage@lwcc.com LWCC 2237 S. Acadian Thruway Baton Rouge, LA 7080

#### **Student Members**

**Jeremy Spears** Telephone: 225-788-8044 10236 Lockhart Rd Apt.A Jeremy.Spears-2@selu.edu Denham Springs, LA 70726

**Daniel Rice** Telephone: 225-931-4687 13447 Acres Ct. Daniel.Rice@selu.edu Baker, LA 70719

#### \*Mary Faust, Program Chair, ASSE Southeastern Student Section Telephone: 985-517-7034 maryfaust2@yahoo.com

12330 Larock Rd Amite, LA 70422

### **Faculty Members**

#### Mr. Lawrence Mauerman, MAS, PE, CSP Telephone: 985-549-3476 Coordinator, OSH&E Degree Programs lmauerman@selu.edu Department of Computer Science and Industrial Technology Southeastern Louisiana University

SLU 10847 Hammond, LA 70402

### Dr. Lu Yuan, ScD

Telephone: 985-549-3925 Lu.Yuan@selu.edu Assistant Professor Occupational Safety, Health, and Environment (OSH&E) Department of Computer Science and Industrial Technology Southeastern Louisiana University SLU 10847 Hammond, LA 70402

### Dr. Ephraim Massawe, ScD

Assistant Professor Occupational Safety, Health, and Environment (OSH&E) Department of Computer Science and Industrial Technology Southeastern Louisiana University SLU 10847 Hammond, LA 70402

### Dr. Cris Koutsougeras, PhD

Professor, Department Head Department of Computer Science and Industrial Technology Southeastern Louisiana University

Telephone: 985-549-2243 Ephraim.Massawe@selu.edu

Telephone: 985-549-2189 ck@selu.edu

SLU 10847 Hammond, LA 70402

### Dr. Pete Territo, Jr. PhD

Internship Coordinator and Associate Professor Department of Computer Science and Industrial Technology Southeastern Louisiana University SLU 10847 Hammond, LA 70402 \* indicates a former member Telephone: 985-549-2071 pterrito@selu.edu

# Appendix B OSH&E Program Industrial Advisory Committee

## Quarterly Meeting Agenda April 24, 2009

| Time                | April 24, 2009<br>Issues                                                                           | Actions        |  |  |  |
|---------------------|----------------------------------------------------------------------------------------------------|----------------|--|--|--|
|                     |                                                                                                    | <u>rectons</u> |  |  |  |
| 11:30 - 11:45 am    | Welcome & Introduction<br>(By Ms. Dorinda Folse)                                                   |                |  |  |  |
| 11:45 am - 12:15 pm | Lunch                                                                                              |                |  |  |  |
| 12:15 - 1:00 pm     | Old Business                                                                                       |                |  |  |  |
|                     | <ol> <li>OSHE Course Objective Development<br/>(By Mr. Lawrence Mauerman)</li> </ol>               |                |  |  |  |
|                     | 2. Rubric for Assessing OSH&E Program<br>Outcomes (By Dr. Lu Yuan)                                 |                |  |  |  |
|                     | <ol> <li>OSH&amp;E Website Update<br/>(By Dr. Lu Yuan)</li> </ol>                                  |                |  |  |  |
|                     | <ol> <li>OSH&amp;E Program Questionnaire<br/>(By Dr. Lu Yuan)</li> </ol>                           |                |  |  |  |
|                     | 5. OSH&E Curriculum Sheets<br>(By Mr. Lawrence Mauerman)                                           |                |  |  |  |
| 1:00 - 2:00 pm      | New Business                                                                                       |                |  |  |  |
|                     | <ol> <li>Professional Electives for OSH&amp;E BS Pr<br/>(By Mr. Lawrence Mauerman)</li> </ol>      | ogram          |  |  |  |
|                     | <ul><li>2. Internship Update<br/>(By Dr. Pete Territo)</li></ul>                                   |                |  |  |  |
|                     | 3. Tentative request of ABET site visit<br>(By Mr. Lawrence Mauerman & Dr. Lu Y                    | Yuan)          |  |  |  |
|                     | <ol> <li>Industrial Support Request Update<br/>(By Ms. Dorinda Folse &amp; Dr. Lu Yuan)</li> </ol> |                |  |  |  |
|                     | <ol> <li>Recognition Certificate<br/>(By Mr. Lawrence Mauerman)</li> </ol>                         |                |  |  |  |
| 2:00 - 2:15 pm      | <ol> <li>Decision on Frequency of Future Meeting</li> <li>Portraits &amp;Bios</li> </ol>           | gs             |  |  |  |

### Appendix C Course Specification Sheet OSHE 111 Introduction to Occupational Safety & Health

### **Course Description:**

This course presents general safety and health concepts and terms, historical developments, program concepts and terms, legislative overview including worker's compensation law, problem identification, hazard recognition, evaluation and control concepts, and program management.

### **Minimum Topics:**

- 1. Historical Perspectives
- 2. Safety and Health Professions
- 3. Theories of Accident Causation
- 4. Regulatory History
- 5. Workers' Compensation
- 6. Loss Control Programs
- 7. Injury and Illness Record Keeping
- 8. Identifying Hazards
- 9. Safety Audit & Inspection
- 10. Accident Investigation and Analysis
- 11. Computers and Information Management
- 12. Safety Training & Promoting Safety

- 1. Describe the history of the safety movement in the United States, including significant safety legislation and the importance of worker's compensation.
- 2. Describe important sources of loss control information.
- 3. Explain how loss control information is analyzed and used to develop effective loss control programs.
- 4. Relate how the elements of effective safety, industrial hygiene and environmental programs are interrelated and dependent on one another.

### **Course Specification Sheet OSHE 112 Design of Hazard Controls**

#### **Course Description**:

*Prerequisite: Current enrollment or prior credit for OSHE 111.* This course studies the application of scientific and engineering principles and methods to achieve optimum safety and health conditions through the analysis and design of process, equipment, products, facilities, operations, and environment. A variety of topics will be covered, including product design, plant layout, construction, maintenance, pressure vessels and piping, mechanical systems, materials handling and storage, ventilation, power tools, electrical equipment, confined space, and transportation vehicles and systems.

#### **Minimum Topics:**

- 1. Hazard Control in General
- 2. Buildings and Plant Layout
- 3. Construction of Plant Facilities
- 4. Maintenance of Plant Facilities
- 5. Boilers and Unfired Pressure Vessels
- 6. Machine Safeguarding & Lockout/Tagout
- 7. Personal Protective Equipment
- 8. Electrical Safety
- 9. Fire Hazards and Life Safety
- 10. Materials Handling and Storage
- 11. Crane, Conveyor, and Rigging
- 12. Powered Industrial Truck
- 13. Hand and Portable Power Tool

- 1. Identify a variety of occupational hazards.
- 2. Recognize information resources regarding occupational hazards.
- 3. Explain basic principles and technologies to analyze and control occupational hazards.

### Course Specification Sheet OSHE 121 Safety and Health Program Management and Administration

### **Course Description**:

*Prerequisite: Current enrollment or prior credit for OSHE 111.* This course addresses the application of management principles and techniques to the management of safety and health and loss control programs. Topics include planning, organizing, budgeting, resourcing, operating, implementing and evaluating safety functions.

### **Minimum Topics:**

- 1. Introduction to Corporate Organization
- 2. Evolution of Modern Safety Concepts
- 3. OSHA Responsibilities and Implementation
- 4. Organization and Administration Effects
- 5. Safety Management
- 6. Cost Analysis
- 7. Performance Measurement and Motivation
- 8. Systems Safety Analysis
- 9. Employee Selection, Placement and Training
- 10. Psychological Aspects and Ergonomics
- 11. Product Safety

- 1. Describe the history of modern industrial safety management and explain how the principles of modern safety management developed.
- 2. Discuss the safety roles and responsibilities of managers at the various levels of authority within a typical industrial organization.
- 3. Describe the proactive elements of management systems that can be used to develop and implement effective safety programs.
- 4. Describe the reactive elements of safety programs that are used in effective programs.
- 5. Identify and explain the psychological and ergonomic components of a job as they relate to safety and health.

### Course Specification Sheet OSHE 141 [241] Principles of Industrial Hygiene

### **Course Description**:

This course introduces the basic industrial hygiene principles of anticipation, recognition, evaluation and control of workplace conditions as they relate to occupational health. Class discussion will focus on a variety of occupational hazards including air contaminants, chemical hazards, biological hazards and physical hazards.

### **Minimum Topics:**

1. Fundamental Concepts of Toxicology

- a. Definitions
- b. Federal Regulations
- c. Environmental Factors or Stresses
- d. Industrial Toxicology
- e. Modes of Entry of Harmful Agents
- f. Types of Airborne Contaminants
- g. Threshold Limit Values (TLVs), etc.
- h. Evaluation
- i. Occupational Skin Diseases
- j. Control Measures
- 2. Anatomy, Physiology, Pathology
  - a. Lungs
  - b. Skin
  - c. Ear
  - d. Eyes
- 3. Recognition of Specific Environmental Factors or Stresses
  - a. Gases, Vapors and Solvents
  - b. Particulates
  - c. Industrial Dermatoses
  - d. Industrial Noise
  - e. Ionizing Radiation
  - f. Temperature Extremes
  - g. Ergonomics
  - h. Biological Hazards
- 4. Evaluation of Hazards
  - a. Evaluation
  - b. Methods of Evaluation
  - c. Air Sampling Instruments
  - d. Direct Reading Gas and Vapor Monitors
  - e. Medical Monitoring
- 5. Control of Environmental Hazards
  - a. Methods of Control
  - b. Ventilation: Local Exhaust and General
  - c. Personal Protective Equipment (PPE)
  - d. Control of Environmental Hazards

Draft by Dr. Lu Yuan 05/18/2009

- 1. Describe the basic principles of industrial hygiene, i.e., the anticipation, recognition, evaluation and control of hazards in the workplace.
- 2. Describe the provisions of federal, state and industry regulations and guidelines regarding worker health on the job.
- 3. Apply the fundamental concepts of industrial hygiene in the work environment.
- 4. Describe specific environmental factors or stresses in the workplace and their potential health effects.
- 5. Demonstrate proper methods in the use and care of industrial hygiene instrumentation and personal protective equipment.

### Course Specification Sheet OSHE 231 Safety Laws, Regulations, and Standards

#### **Course Description**:

*Prerequisite: Current enrollment or prior credit for OSHE 111.* This course studies the development processes, sources, and applications for minimum safety requirements established by laws, regulations, standards, and codes. Major topics include OSHA General Industry and Construction Standards, the enforcement of safety standards, and the role of NIOSH and ACGIH in the safety movement.

#### **Minimum Topics:**

- 1. Laws, Regulations, Codes and Standards What Are They?
- 2. The History of Federal Efforts to Regulate Industrial Safety
- 3. The Occupational Safety and Health Act of 1970
- 4. Other Federal Safety Regulations and Their Applications
- 5. Organization of the *Code of Federal Regulations* (CFR)
- 6. Making the CFR Easier to Use
- 7. Industry Standards-Making Organizations
- 8. Standards and Codes
- 9. Consensus Standards
- 10. OSHA Regulation Parts and Subparts
- 11. OSHA Compliance Standards and Performance Standards
- 12. OSHA Regulations as Minimum Safety Standards
- 13. Applications of OSHA Regulations

- 1. Describe the history and development of the Occupational Safety and Health Act of 1970, and list its major provisions, and list other major pieces of federal legislation that affect industrial safety.
- 2. Describe how mandatory material found in the Code of Federal Regulations (CFR) is organized and demonstrate the ability to locate specific regulations with ease.
- 3. Demonstrate knowledge of standards and codes developed by industry and private organizations which parallel, supplement and compliment federal regulations. Explain how these materials are used as "consensus standards".
- 4. Demonstrate knowledge of the content of the safety regulations found in 29 CFR 1910 and 29 CFR 1926.
- 5. Select several descriptions of work situations from a list provided by the instructor, state the specific applicable federal regulations for each instance.

### Course Specification Sheet OSHE 242 Ergonomics

#### **Course Description**:

*Prerequisites: Enrollment in or prior credit for Mathematics 241 and OSHE 111.* This course explores ergonomic design principles which involve the planning and adapting of equipment and tasks to promote workers' efficiency and comfort. Major topics include: human anatomy, physiology, anthropometry, and other characteristics; and the application of ergonomic principles to workstations, tool design, and material handling procedures.

#### **Minimum Topics:**

- 1. Introduction to Ergonomics
- 2. Human Anatomy, Posture, and Biomechanics
- 3. Anthropometry and Workstation Design
- 4. Standing VS. Sitting
- 5. How the Mind Works
- 6. Human Senses
- 7. Interaction with the Environment
- 8. Manual Material Handling
- 9. The Upper Body at Work
- 10. Hand-Tool Design
- 11. Physiology, Workload, and Work Capacity
- 12. Ergonomic Job Analysis
- 13. Psychosocial Stress and Work Organization

- 1. Select different conceptual frameworks and models to summarize the diversity of ergonomics subjects.
- 2. Relate the human musculoskeletal system with the work that human performs.
- 3. Describe the importance of anthropometric information and apply it to the design of workstation, equipment, and tool.
- 4. Compare and assess the differences between standing and sitting postures and their importance in proper workstation design.
- 5. Predict how body tissues respond to excessive loading and apply the basic principles for the design of hand tools and equipment.
- 6. Explain the biomechanics of shoulder and back injuries.
- 7. Summarize ergonomic risk factors for musculoskeletal disorders and recommend interventions to the redesign of work.

### Course Specification Sheet OSHE 251 Environmental Laws and Practices

### **Course Description**:

This course presents an introduction to federal and state environmental regulations which impact the safety function in industry. Major topics include hazardous waste management, disposal and cleanup, prevention of air, water, and soil contamination, and environmental program management.

### **Minimum Topics:**

- 1. The Difference between Laws and Regulations
- 2. Important Federal Publications
- 3. The Code of Federal Regulations (CFR)
- 4. History of Environmental Legislation
- 5. Chemical Use and Assessment Laws
  - a. Toxic Substances Control Act (TSCA)
  - b. Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA)
  - c. Occupational Safety and Health Act (OSH Act)
- 6. Chemical By-Product Laws
  - a. Clean Air Act (CAA)
  - b. Clean Water Act (CWA)
  - c. Safe Drinking Water Act (SDWA)
- 7. Chemical Waste Disposal Laws
  - a. Resource Conservation and Recovery Act (RCRA)
  - b. Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)
  - c. Superfund Amendment and Reauthorization Act (SARA)
- 8. Chemical Transportation Laws.
  - a. Hazardous Materials Transportation Act (HMTA)
  - b. Hazardous Materials Transportation Uniform Safety Act (HMTUSA)

- 1. Briefly describe the process by which a law passed by congress becomes a safety, health or environmental regulation.
- 2. Discuss the general history of safety and environmental legislation in the United States and the major factors and historic events which have influenced its development.
- 3. Be able to demonstrate a basic understanding of the purpose of a specific safety or environmental regulation by assigning it to one of the four major categories of environmental laws, i.e.: (1) Chemical Use and Assessment Laws; (2) Chemical By-Product Laws; (3) Chemical Waste Disposal Laws; and (4) Chemical Transportation Laws.
- 4. Identify and discuss the basic provisions of major environmental laws, and tell where, within the *Code of Federal Regulations* (CFR), the regulations resulting from the laws are found.
- 5. Define important terms and acronyms of safety and environmental regulations.

### **Course Specification Sheet OSHE 261 Fire Protection and Prevention**

### **Course Description**:

This course introduces the basic principles of fire and fire prevention in the work place. Emphasis will be placed on evaluating existing and planned facilities from a fire and explosion standpoint, and applying the basic principles of hazard recognition, evaluation and control when developing fire prevention and emergency response activities.

### **Minimum Topics:**

- 1. Fire in History and Contemporary Life
- 2. Understanding America's Fire Problem
- 3. Fire Behavior
- 4. Building Design and Construction
- 5. Concepts of Egress Design
- 6. Assessing Life Safety in Buildings
- 7. Fire Department Structure and Management
- 8. Fire Department Facilities and Equipment
- 9. Preventing Fire Loss
- 10. Controlling Fire Loss through Active Fire Protection Systems
- 11. Fire Investigation
- 12. Introduction to the NFPA 101 Life Safety Code
- 13. Planning for Emergency Response
- 14. OSHA Requirements Relative to Fire Prevention and Emergency Action/Response Plans
- 15. Public and Private Support Organizations
- 16. Careers in Fire Protection

### **Course Objectives:**

Upon completion of the course, students will be able to:

- 1. Define the term "fire"
- 2. Explain the Fire Triangle and Fire Tetrahedron
- 3. Explain various methods of fire and explosion control
- 4. List and explain the classes of fire
- 5. Describe characteristics of combustible solids such as wood, plastics, polymers and textiles
- 6. Define key terms relative to flammable and combustible liquids, gases and vapors as well as hazardous materials
- 7. Explain the NFPA/NEC Electrical Hazard Classification System
- 8. Describe the general procedure for conducting a fire investigation
- 9. Explain the elements of building fire safety
- 10. Compare and contrast the properties of wood, steel, concrete, glass, gypsum, masonry and plastics with respect to fire
- 11. Explain the concept of Flame Spread Ratings
- 12. Explain the concept of Fire Loading Based on Occupancy
- 13. Describe basic methods of smoke management
- 14. Explain NFPA 220 relative to the Types of Building Construction
- 15. Describe the economic benefits of sprinkler/deluge systems

Draft by Dr. Lu Yuan 05/18/2009

- 16. Compare and contrast the dry pipe, wet pipe and deluge type systems
- 17. Explain the properties, characteristics and limitations of the following extinguishing agents:
  - CO<sub>2</sub> Dry Powder
    - Halon Nitrogen
  - Dry Chemical Steam
- 18. Explain OSHA and NFPA requirements for the inspection and maintenance of fire extinguishing systems and portable fire extinguishers
- 19. Describe the services that can be performed by heat and smoke detection devices
- 20. Explain the purpose of the NFPA Life Safety Code
- 21. Explain the difference between a "specification" code and a "performance" code
- 22. Describe the relationships between Building Codes and Fire Codes
- 23. Describe OSHA requirements for:
  - Controlling Hot Work
  - Fire Watches
  - Emergency Action Plans
  - Fire Prevention Plans
  - Fire Brigades
- 24. Describe how to prepare a Welding, Burning/Hot Work Permit

### Course Specification Sheet OSHE 311 Safety and Health Program Development

### **Course Description**:

This course presents the key elements necessary to develop or to assess occupational safety and health programs. Major topics include management commitment and employee involvement; worksite analysis; hazard correction and control; training, and evaluation.

### **Minimum Topics:**

- 1. Assessment of Management Commitment
- 2. Obtaining Change Where Necessary
- 3. Supporting Management Efforts
- 4. Opportunities for Employee Involvement
- 5. Obtaining "Buy-in"
- 6. Effectiveness of Incentive Programs
- 7. Worksite Analysis Techniques
- 8. Conducting Worksite Analysis
- 9. Working with the Results
- 10. Methods of Hazard Control
- 11. Implementing Changes
- 12. Effective Training
- 13. Types of Training
- 14. Method of Evaluation
- 15. Using Feedback

- 1. Describe the elements of an effective occupational safety and health program, such as management commitment and employee involvement.
- 2. Develop a new occupational safety and health program for a company that has not previously had one.
- 3. Assess an existing occupational safety and health program.
- 4. Apply proven management principles to correct deficiencies discovered through the assessment of an occupational safety and health program.

### **Course Specification Sheet OSHE 322 Behavior Aspects of Safety**

#### **Course Description**:

*Prerequisites: Psychology 101.* This course will introduce students to the application of scientific research based principles and methods to bring about change in the work culture through attitude, behavior and environmental conditions. Specific topics will include traditional approaches and philosophies for improving safety, environmental effects, incentives, developing and building cultural change, identifying critical behavior, developing checklists, giving and receiving recognition, and measuring performance.

#### **Minimum Topics:**

- 1. Elements of the Workplace System
- 2. Problems Using Psychological Approaches to Preventing Accidents
- 3. Core Concepts for the Course
- 4. Establishing Theories For Behavior-based Safety: The Total Safety Culture
- 5. Person-Based vs. Behavior-Based
- 6. The Required Paradigm Shift
- 7. The Nature of the Worker
- 8. Principles of Behavior
- 9. Critical Behaviors
- 10. Analysis of Behaviors
- 11. The Role of Activators
- 12. The Role of Consequences
- 13. Intervention for Change
- 14. Actively Caring
- 15. Promoting Teamwork
- 16. Obtaining Buy-in and Support

- 1. List the components of a workplace; i.e., its human, situational and environmental components, and describe their interrelationships.
- 2. Explain how many current safety practices in the workplace are not effective reducing the number workplace incidents below present levels.
- 3. Describe the characteristics of a Total Safety Culture and identify the elements that must be present in order to create such a culture.
- 4. Apply the characteristics of human nature to produce meaningful, permanent changes in behavior that will promote safety.
- 5. Express the principles upon which behavior is based.
- 6. Define, identify, observe, and analyze critical behaviors.

Draft by Dr. Lu Yuan 05/18/2009

- 7. Examine how activators and consequences can be used to modify and mold behavior.
- 8. Recommend interventions in established behavior patterns to develop acceptable safety practices.
- 9. Justify and obtain support and buy-in for a Total Safety Culture through behavior based safety efforts.

### Course Specification Sheet OSHE 323 Product Safety and Liability

### **Course Description**:

This course examines the importance of considering the safety of a product in its ultimate use. It considers aspects of product design; intended use and foreseeable misuse; and potential injury mechanisms. It uses classic products liability case studies to provide practical application of the principles learned. It also looks at manufacturer liabilities through injury tort actions.

### **Minimum Topics:**

- 1. Introduction and General Information
- 2. Product Liability Issues
- 3. Safety Costs and Losses
- 4. Standards and Criteria
- 5. Modern Concepts of Accident Prevention
- 6. Hazardous Characteristics of Products
  - a. Hazards which Cause Injury
  - b. Hazards which Cause Sickness
  - c. Malfunctions
  - d. Environmental Factors
  - e. Operator Error
- 7. Minimizing Accidents and Their Effects
- 8. Diagnostic Tools and Methodologies
  - a. Fault Tree Analysis
  - b. Failure Mode and Effect Analysis
  - c. Operating Hazard Analysis
- 9. Product Safety Program
- 10. Risk Assessment
- 11. Manufacturing the Safe Product

- 1. Describe the basis for product liability lawsuits that can increase the costs and affect the profits of a company.
- 2. Discuss the state and federal agencies, and the stature laws that regulate product safety.
- 3. Discuss the production standards and other criteria that are applied to the manufacture of products for the market.
- 4. List and describe the possible conditions that can cause injury as result of the use of a product: i.e., malfunction, operator error, etc.
- 5. Demonstrate a knowledge of the analysis methods and techniques that can be employed to identify and correct potential hazards in manufactured products to prevent user injury.

### Course Specification Sheet OSHE 341 Field Methods of Industrial Hygiene and Toxicology

### **Course Description**:

*Prerequisites:* Math 241 and OSHE 241. This course presents an examination of the methods used by the industrial hygienist for the identification and assessment of health hazards in the workplace. Major topics include: establishment and use of methodologies to sample and evaluate exposures to air contaminants (gasses, vapors, aerosols, and particulates), microorganisms and allergens, noise, heat, and cold stress, electrical and magnetic radiation, and ionizing and ultraviolet radiation. The course also includes equipment use, maintenance, and calibration.

### **Minimum Topics:**

- 1. Basic Principles of Sampling
- 2. Occupational Exposure Limits (OELs)
- 3. Equipment
  - a. The Right Equipment of the Job
  - b. Calibration and Maintenance of Equipment
- 4. Methods
  - a. Use of Sampling Protocols
  - b. Error and Accuracy
  - c. Chain of Custody
- 5. Resources
  - a. NIOSH
  - b. OSHA
  - c. AIHA & ACGIH
  - d. Others
- 6. Sampling for Gases and Vapors
- 7. Sampling for Particulates
- 8. Sampling for Physical Hazards
  - a. Noise
  - b. Radiation
  - c. Barometric Hazards
  - d. Thermal Hazards

- 1. Design and implement an air sampling program for gases, vapors, aerosols and particulates.
- 2. Design and implement a sampling program for other health hazards such as microorganisms, heat and cold, and various radiation sources.
- 3. Describe the common analytical methods used by laboratories.
- 4. Select, calibrate and use the proper instruments for collecting samples.
- 5. Use statistical data to assist in making decisions to establish control methods.

### Course Specification Sheet OSHE 381 [281] Safety in Chemical and Process Industries

### **Course Description**:

*Prerequisites: Enrollment in or prior credit for Chemistry 101 and Physics 191.* This course presents the fundamentals of chemical and process industry safety. It includes a discussion of federal regulatory requirements; the major hazards inherent in chemical plants and petroleum refineries; and the methods used to identify, assess and mitigate those hazards. Chemical process safety is discussed in the context of case studies, providing students with the opportunity to examine real-life industry safety practices.

### **Minimum Topics:**

- 1. Introduction to Chemical Process Safety
- 2. Federal Process Safety Management Regulations
- 3. Toxicology
- 4. Industrial Hygiene Principles
- 5. Source Models
- 6. Toxic Release and Dispersion Models
- 7. Characteristics of Flammable and Explosive Materials
- 8. Designs to Prevent Fires and Explosions
- 9. Causes of Over-pressurization
- 10. Introduction to Reliefs
- 11. Relief Sizing
- 12. Hazard Identification Methodologies
- 13. Risk Assessment Methodologies
- 14. Accident Investigations

- 1. Discuss the provisions of the federal Process Safety Management (PSM) regulations and demonstrate how they are applied at typical industries in the area.
- 2. Identify the toxic effects of chemicals encountered in the industrial environment; and examine how engineering controls are used to eliminate these hazards.
- 3. Discuss the physical characteristics of materials which make them flammable or explosive; and illustrate the controls that are used in the industrial setting to counter these hazards.
- 4. State the causes of over-pressurization in equipment and systems in the industrial environment; and illustrate the operation and use of devices to prevent its occurrence.
- 5. Describe how each of the formal Process Hazard Analysis (PHA) techniques discussed in class is used. Examine and explain the advantages and disadvantages of each technique.

### Course Specification Sheet OSHE 382 [282] Construction Safety

#### **Course Description**:

*Prerequisites: Enrollment in or prior credit for OSHE 111 and OSHE 121.* The course addresses the application of management principles, communication and human relations factors, safety/health rules, industry and federal standards, accident investigation, and technical issues especially within the job planning phases in the construction environment.

### **Minimum Topics:**

- 1. Construction Safety in General
- 2. Construction Safety Program
- 3. Workers' Compensation in Construction
- 4. Contractor Selection and Safety Requirement
- 5. Construction Safety Abuse Programs
- 6. Rewards/Incentives
- 7. Prejob/Pretask Planning
- 8. Accident Investigation and Reconstruction
- 9. Safety Training
- 10. Regulatory Requirements
- 11. Phase Planning for Site Preparation
- 12. Excavation, Concrete, and Steel Erection
- 13. Fall Prevention and Protection
- 14. Hazardous Materials & Confined Spaces
- 15. Mechanical and Electrical Systems

- 1. Understand construction safety in an increasingly challenging and changing environment.
- 2. Describe the roles of organizations and personnel involved in major construction projects and explain how each affects site safety.
- 3. Illustrate how contractors and subcontractors can be qualified and selected for a construction project.
- 4. Demonstrate how site safety programs can be coordinated among the many contractors on a construction site to provide the overall safety.
- 5. Explain the legal aspects including liability and regulatory requirements of construction safety.
- 6. Examine many technical issues in construction, particularly the requirements and applications of safety planning in the early job phases.

### Course Specification Sheet OSHE 421 [321] Measurement of Safety Performance and Accident Investigation and Analysis

### **Course Description:**

*Prerequisite: Enrollment in or prior credit for Math 241.* This course presents methods to objectively evaluate a company's safety progress. The course covers two distinct topics: (1) safety performance measurement, and (2) incident investigation and analysis. The first segment of the course addresses ways of measuring safety performance objectively and subjectively using safety audits, inspections, observations, performance appraisal systems, and injury/illness statistics. The second segment of the course addresses the causes of accidents, systematic ways of conducting investigations, documenting the findings, causes and other significant data, and drafting recommendations.

### **Minimum Topics:**

- 1. Introduction & Importance of Measurement
- 2. Traditional Safety Performance Indicators
- 3. Current Measurement Techniques
- 4. Injury and Illness Statistics
- 5. Performance Measurement Category 1
- 6. Performance Measurement Category 2
- 7. Systematic Approach of Measurement
- 8. Measurement Summary and Trends
- 9. Accident Investigation Basics
- 10. Preparing for Mishaps
- 11. Getting Underway with the Investigation
- 12. Human Aspects & Environment
- 13. Materials & Systems Investigation
- 14. Investigation Techniques 1
- 15. Investigation Techniques 2
- 16. Investigation Report and Overview

- 1. Understand the importance of performance measurement in the safety field.
- 2. Differentiate between current and previous safety performance measurement strategies.
- 3. Describe different measurement methodologies to evaluate and improve safety performance in different environments.
- 4. Understand the causes of accidents and incidents and discuss the need for investigation.
- 5. Develop systematic approaches to prepare, conduct, organize, and manage accident investigation.
- 6. Describe and apply various analytical techniques of accident investigation.

### Course Specification Sheet OSHE 424 [324] System Safety Methodologies

### **Course Description**:

*Prerequisites: Mathematics 241, OSHE 111, and OSHE 121.* This course presents the concepts of Risk Management and Loss Control through the use of systematic approaches to hazard anticipation, identification, evaluation and control. Major topics include: an introduction to qualitative methods of evaluating the hazards and risks associated with systems, processes, equipment, and other entities. It also includes a review of techniques for mitigating or managing identified risks.

### **Minimum Topics:**

- 1. System Safety Methodologies in General
- 2. Understanding Risk
- 3. Hazard Evaluation Scope and Preparation
- 4. Hazard Evaluation Meetings and Results
- 5. Hazard Identification Methods in General
- 6. Hazard and Operability Study (HazOp)
- 7. HazOp Case Study Step 1
- 8. HazOp Case Study Step 2
- 9. HazOp Case Study Step 3
- 10. Fault Tree Analysis (FTA)
- 11. FTA Case Study Step 1
- 12. FTA Case Study Step 2
- 13. System Safety Analysis Overview

- 1. Describe and compare the basic features of the following hazard evaluation techniques:
  - Safety Review
  - Checklist Analysis
  - Relative Ranking
  - Preliminary Hazard Analysis
  - What-if Analysis
  - What-if/Checklist Analysis
  - Hazard and Operability Analysis (HazOp)
  - Failure Modes and Effect Analysis
  - Fault Tree Analysis (FTA)
  - Event Tree Analysis (ETA)
  - Cause-Consequence Analysis
  - Human Reliability Analysis
- 2. Select the best hazard evaluation technique based on the conditions of the job and the desired output of the analysis.
- 3. Perform a simple hazard evaluation using one or more of the methods studied in the class.

### Course Specification Sheet OSHE 441 Industrial Toxicology

#### **Course Description**:

*Prerequisites: General Biology 151, Zoology 241, and OSHE 241.* This course examines the effects of industrial toxicants on the human body. Major topics include: the discipline of toxicology, acute and chronic exposures and effects, routes and characteristics of exposures, target organs and systems, dose and response, and carcinogenesis. It also discusses the toxic characteristics of various classes of toxic materials.

### **Minimum Topics:**

- 1. General Principles of Toxicology
- 2. Absorption, Distribution, and Elimination of Toxic Agents
- 3. Biotransformation: A Balance between Bioactivation and Detoxification
- 4. Hematotoxicity: Chemically Induced Toxicity of the Blood
- 5. Hepatotoxicity: Toxic Effects on the Liver
- 6. Nephrotoxicity: Toxic Responses of the Kidney
- 7. Neurotoxicity: Toxic Responses of the Nervous System
- 8. Dermal and Ocular Toxicity: Toxic Effects of the Skin and Eyes
- 9. Pulmonotoxicity: Toxic Effects in the Lung
- 10. Immunotoxicity: Toxic Effects on the Immune System
- 11. Reproductive Toxicity
- 12. Mutagenesis and Genetic Toxicology
- 13. Chemical Carcinogenesis
- 14. Properties and Effects of Metals
- 15. Properties and Effects of Pesticides
- 16. Properties and Effects of Organic Solvents
- 17. Properties and Effects of Natural Toxins and Venoms

- 1. Describe and define the general principles of toxicology, including terminology; the dose response relationship; routes of entry; absorption, distribution, and elimination of toxic agents; and biotransformation of substances in the body.
- 2. Describe the adverse effects caused by various toxic agents on specific tissues and organs including the liver, blood, kidneys, nervous system, skin, eyes, lungs, and immune system.
- 3. Discuss toxicological areas of special concern including reproductive toxicology and carcinogenesis.
- 4. Discuss adverse health effects associated with selected classes of chemical agents including metals, pesticides, organic solvents, and naturally occurring toxins.
- 5. Describe the role and application of toxicology in modern times, including risk assessment, public health, epidemiology, and control strategies.

### Course Specification Sheet OSHE 451 Hazardous Materials Management

### **Course Description**:

*Prerequisite: OSHE 251.* This course examines acceptable policies, procedures, and methods for the handling of oil and hazardous wastes produced by industry. Major topics include: advanced aspects of risk assessment, applicable environmental legislation, waste characterization and site assessment, waste minimization and recovery, chemical, physical, and biological waste treatment, thermal waste treatment, landfill disposal and injection well disposal. It also includes a section on the transportation of hazardous wastes.

### **Minimum Topics:**

- 1. Introduction & Overview
- 2. Administration and Regulatory Requirements
  - a. RCRA
  - b. HAZWOPER
  - c. HazCom
  - d. Others (DOE, DOT, etc.)
- 3. Hazardous Materials and Hazardous Wastes
  - a. Defining HazMat and Hazardous Waste
  - b. HazMat/Hazardous Waste Exposures
  - c. Personal Protective Equipment Selection and Use
  - d. Monitoring Methodologies
- 4. Waste Minimization
- 5. On-Site Waste Management
- 6. Waste Treatment and Disposal Technologies
- 7. Waste Transportation
- 8. Emergency Response Organization and Planning
- 9. Emergency Response Methods
- 10. Emergency Response Equipment

- 1. Describe state and federal requirements for management of waste and hazardous waste materials, as found in 40 CFR 240 to 271.
- 2. Analyze an industrial facility's produced waste and develop a program to effectively and efficiently manage that waste.
- 3. Describe the operation of a treatment, storage, and disposal (STD) facility, and how to select a TSD facility to meet a company's waste disposal requirements.
- 4. Describe the various methods of treating or disposing of hazardous waste, i.e., incineration, injection, impoundments, etc., and give the advantages and disadvantages of each type.
- 5. Respond to a simulated emergency involving hazardous materials, demonstrating proper, safe methods for hazard identification, evaluation, and control.

### Course Specification Sheet OSHE 471 [371] Education and Training Methods for Occupational Safety and Health

### **Course Description**:

This course introduces the concepts of adult training and education with emphasis on occupational safety and health. Major topics include: instructional system design, including performing a training needs assessment tasks analysis, program design goals and objectives, performance evaluation, delivery methods and media; computer-based training methods; systems to manage costs; and record keeping.

### **Minimum Topics:**

- 1. Management Involvement in Safety Training
- 2. The Role of the Supervisor in Safety Training
- 3. Facts about Safety Training
- 4. OSHA Requirements for Safety Training
- 5. Other Requirements
- 6. Determining Training Needs
- 7. Establishing Training Objectives
- 8. Determining Course Content
- 9. Developing Instructional Outlines
- 10. Use of Audio/Visual Aids and Equipment
- 11. Examination, Testing and Validation
- 12. Training Recordkeeping
- 13. Drills and Exercises
- 14. On-The-Job Training

- 1. Define and describe the differences between education and training.
- 2. Given a suitable training topic, develop a "map" for the steps in developing a training course.
- 3. Given a suitable training topic, perform a skills analysis.
- 4. Given an accurate skills analysis for a training topic, write a set of training objectives for that topic.
- 5. Given proper training objectives, develop a course of instruction designed to achieve the training objectives.
- 6. Develop a method of criterion testing that will demonstrate achievement of the objectives of the training.

### Appendix D Rubric for Assessing OSH&E Program Outcomes Draft by Dr. Lu Yuan 05/18/2009

<u>Objective 1:</u> Apply knowledge and principles of mathematics, science, technology, and management in industry, business, or other related areas of employment as occupational safety, health, and environment professionals.

Expected Outcomes: Students completing the Baccalaureate degree in OSH&E will demonstrate the ability to apply basic mathematical and scientific knowledge in the safety, health, and environment field.

| Performance Criteria                                                                                                                                   | Below Expectations<br>1                                                                                                                    | Progressing to<br>Criteria<br>2                                                                                                                                                                                   | Meets Criteria<br>3                                                                                                                                                                                                                           | Exceeds Criteria<br>4                                                                                                                                                                             | Score |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1. Students know how to apply<br>basic mathematical and<br>statistical knowledge in the<br>safety, health, and<br>environment field.                   | Student fails to solve<br>typical OSH&E<br>problems using basic<br>mathematical and<br>statistical knowledge.                              | Student identifies<br>typical OSH&E<br>problems, but<br>struggles to select<br>proper mathematical<br>and statistical tools<br>needed to solve the<br>problems.                                                   | Student correctly<br>identifies typical<br>OSH&E problems and<br>applies basic<br>mathematical and<br>statistical knowledge,<br>but makes minor<br>mistakes during<br>problem solving.                                                        | Student clearly<br>identifies typical<br>OSH&E problems and<br>correctly applies basic<br>mathematical and<br>statistical knowledge<br>to solve the problems.                                     |       |
| 2. Students know basic<br>principles in chemistry,<br>physics, and biology as it<br>pertains to the practice of<br>safety, health, and<br>environment. | Student is unable to<br>understand basic<br>principles in<br>chemistry, physics,<br>and biology that are<br>applied to the OSH&E<br>field. | Student understands<br>basic principles in<br>chemistry, physics,<br>and biology that are<br>applied to the OSH&E<br>field, but struggles to<br>apply those principles<br>properly to solve<br>specific problems. | Student understands<br>and applies basic<br>principles in<br>chemistry, physics,<br>and biology that are<br>applied to the OSH&E<br>field, but makes minor<br>mistakes and/or<br>demonstrates a lack of<br>clarity during problem<br>solving. | Student clearly and<br>correctly understands<br>and applies basic<br>principles in<br>chemistry, physics,<br>and biology that are<br>applied to the OSH&E<br>field to solve specific<br>problems. |       |

| 3. Students know basic<br>principles in business<br>management as it pertains to<br>the practice of safety, health,<br>and environment. | Student is unable to<br>understand basic<br>principles in business<br>management that are<br>applied to the OSH&E<br>field. | Student understands<br>basic principles in<br>business management<br>that are applied to the<br>OSH&E field, but<br>struggles to apply<br>those principles<br>properly to solve<br>specific problems. | Student understands<br>and applies basic<br>principles in business<br>management that are<br>applied to the OSH&E<br>field, but demonstrates<br>a lack of clarity during<br>problem solving. | Student clearly and<br>correctly understands<br>and applies basic<br>principles in business<br>management that are<br>applied to the OSH&E<br>field to solve specific<br>problems. |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|

<u>Objective 2:</u> Apply practical-oriented knowledge and skills in safety, health, and environment to anticipate, identify and evaluate hazardous conditions and practices, to develop hazard control designs, methods, procedures and programs, and to implement and manage effective safety and health programs.

Expected Outcomes 2A: Students completing the Baccalaureate degree in OSH&E will demonstrate the understanding of safety, health, and environment knowledge.

| Performance Criteria                                                                                                                            | Below Expectations<br>1                                                                                                     | Progressing to<br>Criteria<br>2                                                                                                                                                                                  | Meets Criteria<br>3                                                                                                                                                                                    | Exceeds Criteria<br>4                                                                                                                                                                                | Score |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 2A1. Students understand<br>occupational safety, health,<br>and environment<br>fundamentals.                                                    | Student fails to<br>understand<br>occupational safety,<br>health, and<br>environment<br>fundamentals.                       | Student understands<br>the basics of<br>occupational safety,<br>health, and<br>environment, but<br>struggles to<br>differentiate between<br>concepts.                                                            | Student understands<br>the basics of<br>occupational safety,<br>health, and<br>environment and how<br>they are interrelated,<br>but demonstrates a<br>lack of clarity.                                 | Student clearly and<br>correctly understands<br>occupational safety,<br>health, and<br>environment<br>fundamentals.                                                                                  |       |
| 2A2. Students know legal<br>aspects of safety, health, and<br>environmental practices.                                                          | Student fails to<br>understand the legal<br>framework within the<br>OSH&E field.                                            | Student understands<br>the legal framework<br>within the OSH&E<br>field, but struggles to<br>differentiate between<br>agency/organization<br>responsibilities.                                                   | Student understands<br>the legal framework<br>within the OSH&E<br>field and how<br>different<br>agencies/organizations<br>are interrelated, but<br>demonstrates a lack of<br>clarity.                  | Student clearly and<br>correctly understands<br>the legal framework<br>within the OSH&E<br>field.                                                                                                    |       |
| 2A3. Students understand the interactions of physical, chemical, biological, and ergonomic agents, factors, and/or stressors on the human body. | Student fails to<br>understand physical,<br>chemical, biological,<br>and ergonomic agents,<br>factors, and/or<br>stressors. | Student understands<br>the impacts of physical,<br>chemical, biological,<br>and ergonomic agents,<br>factors, and/or stressors<br>on the human body, but<br>struggles to<br>differentiate between<br>substances. | Student understands<br>the interactions of<br>physical, chemical,<br>biological, and<br>ergonomic agents,<br>factors, and/or stressors<br>on the human body, but<br>demonstrates a lack of<br>clarity. | Student clearly and<br>correctly understands<br>the impacts and<br>interactions of<br>physical, chemical,<br>biological, and<br>ergonomic agents,<br>factors, and/or stressors<br>on the human body. |       |

| 2A4. Students understand the application of laws, regulations, standards, and codes to safety, health and environmental conditions. | Student fails to<br>understand the<br>application of laws,<br>regulations, standards,<br>and codes to safety,<br>health and<br>environmental<br>conditions. | Student understands<br>how to apply laws,<br>regulations, standards,<br>and codes to safety,<br>health and<br>environmental<br>conditions, but<br>struggles to<br>differentiate between<br>substances. | Student understands<br>the application of<br>laws, regulations,<br>standards, and codes<br>to safety, health and<br>environmental<br>conditions, but<br>demonstrates a lack of<br>clarity. | Student clearly<br>understands and<br>correctly applies laws,<br>regulations, standards,<br>and codes to safety,<br>health and<br>environmental<br>conditions. |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2A5. Students understand and<br>use basic principles of fire<br>prevention and protection in<br>the workplace.                      | Student fails to<br>understand basic<br>principles of fire<br>prevention and<br>protection in the<br>workplace.                                             | Student understands<br>basic principles of fire<br>prevention and<br>protection in the<br>workplace, but<br>struggles to use the<br>principles properly.                                               | Student understands<br>and uses basic<br>principles of fire<br>prevention and<br>protection in the<br>workplace, but<br>demonstrates a lack of<br>clarity.                                 | Student clearly<br>understands and<br>correctly uses basic<br>principles of fire<br>prevention and<br>protection in the<br>workplace.                          |
| 2A6. Students know industrial<br>and construction safety<br>throughout the work processes.                                          | Student fails to<br>understand industrial<br>and construction<br>safety throughout the<br>work processes.                                                   | Student understands<br>industrial and<br>construction safety<br>throughout the work<br>processes, but<br>struggles to<br>differentiate between<br>concepts and<br>substances.                          | Student understands<br>industrial and<br>construction safety<br>throughout the work<br>processes, but<br>demonstrates a lack of<br>clarity.                                                | Student clearly and<br>correctly understands<br>industrial and<br>construction safety<br>throughout the work<br>processes.                                     |

Expected Outcomes 2B: Students completing the Baccalaureate degree in OSH&E will demonstrate the ability to obtain the necessary skills to anticipate, identify and evaluate safety, health, and environment hazards, and to develop and implement hazard control methods, programs, and system designs.

| Performance Criteria                                                                                                           | Below Expectations<br>1                                                                                                             | Progressing to<br>Criteria<br>2                                                                                                                                                                                   | Meets Criteria<br>3                                                                                                                                                                   | Exceeds Criteria<br>4                                                                                                                                       | Score |
|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 2B1. Students know how to<br>apply basic laboratory<br>techniques associated with<br>industrial hygiene and basic<br>sciences. | Student fails to<br>understand basic<br>laboratory techniques<br>associated with<br>industrial hygiene and<br>basic sciences.       | Student understands<br>the application of<br>basic laboratory<br>techniques associated<br>with industrial<br>hygiene and basic<br>sciences, but struggles<br>to differentiate<br>between concepts and<br>methods. | Student understands<br>the application of<br>basic laboratory<br>techniques associated<br>with industrial<br>hygiene and basic<br>sciences, but<br>demonstrates a lack of<br>clarity. | Student clearly<br>understands and<br>correctly applies basic<br>laboratory techniques<br>associated with<br>industrial hygiene and<br>basic sciences.      |       |
| 2B2. Students know how to<br>anticipate, identify and<br>evaluate hazardous agents,<br>conditions, and practices.              | Student fails to<br>understand how to<br>anticipate, identify<br>and evaluate<br>hazardous agents,<br>conditions, and<br>practices. | Student understands<br>how to anticipate,<br>identify and evaluate<br>hazardous agents,<br>conditions, and<br>practices, but<br>struggles to<br>differentiate between<br>methods.                                 | Student understands<br>different methods to<br>anticipate, identify<br>and evaluate<br>hazardous agents,<br>conditions, and<br>practices, but<br>demonstrates a lack of<br>clarity.   | Student clearly<br>understands and<br>correctly applies<br>different methods to<br>anticipate, identify<br>and evaluate<br>hazardous agents,<br>conditions. |       |
| 2B3. Students know<br>fundamental exposure<br>assessment techniques.                                                           | Student fails to<br>understand<br>fundamental exposure<br>assessment<br>techniques.                                                 | Student understands<br>the basics of exposure<br>assessment<br>techniques, but<br>struggles to<br>differentiate between<br>methods.                                                                               | Student understands<br>different fundamental<br>exposure assessment<br>techniques, but<br>demonstrates a lack of<br>clarity.                                                          | Student clearly<br>understands<br>fundamental exposure<br>assessment<br>techniques.                                                                         |       |

| 2B4. Students know how to<br>develop hazard control<br>designs, methods, procedures,<br>and programs.       | Student fails to<br>understand how to<br>develop hazard<br>control designs,<br>methods, procedures,<br>and programs.          | Student understands<br>how to develop hazard<br>control designs,<br>methods, procedures,<br>and programs, but<br>struggles to<br>differentiate between<br>concepts and methods. | Student understands<br>different means to<br>develop hazard<br>control designs,<br>methods, procedures,<br>and programs, but<br>demonstrates a lack of<br>clarity.              | Student clearly<br>understands and<br>correctly develops<br>hazard control<br>designs, methods,<br>procedures, and<br>programs.        |  |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|
| 2B5. Students know how to conduct accident/incident investigation and analysis.                             | Student fails to<br>understand how to<br>conduct<br>accident/incident<br>investigation and<br>analysis.                       | Student understands<br>how to conduct<br>accident/incident<br>investigation and<br>analysis, but struggles<br>to differentiate<br>between theories,<br>models and methods.      | Student understands<br>different theories,<br>models and methods<br>to conduct<br>accident/incident<br>investigation and<br>analysis, but<br>demonstrates a lack of<br>clarity. | Student clearly<br>understands and<br>correctly conducts<br>accident/incident<br>investigation and<br>analysis.                        |  |
| 2B6. Students know how to<br>implement and manage<br>effective safety, health, and<br>environment programs. | Student fails to<br>understand how to<br>implement and<br>manage effective<br>safety, health, and<br>environment<br>programs. | Student understands<br>how to implement and<br>manage effective<br>safety, health, and<br>environment<br>programs, but<br>struggles to<br>differentiate between<br>elements.    | Student understands<br>different elements to<br>implement and<br>manage effective<br>safety, health, and<br>environment<br>programs, but<br>demonstrates a lack of<br>clarity.  | Student clearly<br>understands and<br>correctly implements<br>and manages effective<br>safety, health, and<br>environment<br>programs. |  |

Objective 3: Become effective communicators and ethical facilitators within the practice of safety, health, and environment.

Expected Outcomes: Students completing the Baccalaureate degree in OSH&E will demonstrate the ability to express thoughts effectively in oral and written communications, and to understand ethical behaviors and professional responsibility.

| Performance Criteria                                                                                                                            | Below Expectations<br>1                                                                                                                                             | Progressing to<br>Criteria<br>2                                                                                                                                                                                                   | Meets Criteria<br>3                                                                                                                                                                                         | Exceeds Criteria<br>4                                                                                                                                               | Score |
|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1. Students are able to<br>effectively express thoughts in<br>oral and written<br>communications.                                               | Student fails to<br>effectively express<br>thoughts in oral and<br>written<br>communications.                                                                       | Student expresses<br>thoughts in oral and<br>written<br>communications, but<br>struggles to<br>demonstrate the<br>effectiveness.                                                                                                  | Student generally<br>effectively expresses<br>thoughts in oral and<br>written<br>communications, but<br>demonstrates a lack of<br>consistency.                                                              | Student consistently<br>and effectively<br>expresses thoughts in<br>oral and written<br>communications.                                                             |       |
| 2. Students know the<br>techniques, skills, and modern<br>behavioral tools necessary for<br>the practice of safety, health,<br>and environment. | Student fails to<br>understand the<br>techniques, skills, and<br>modern behavioral<br>tools necessary for the<br>practice of safety,<br>health, and<br>environment. | Student understands<br>the techniques, skills,<br>and modern<br>behavioral tools<br>necessary for the<br>practice of safety,<br>health, and<br>environment, but<br>struggles to<br>differentiate between<br>concepts and methods. | Student understands<br>different techniques,<br>skills, and modern<br>behavioral tools<br>necessary for the<br>practice of safety,<br>health, and<br>environment, but<br>demonstrates a lack of<br>clarity. | Student clearly<br>understands the<br>techniques, skills, and<br>modern behavioral<br>tools necessary for the<br>practice of safety,<br>health, and<br>environment. |       |
| 3. Students are able to<br>effectively function as a part of<br>multi-disciplinary team.                                                        | Student fails to<br>effectively function as<br>a part of multi-<br>disciplinary team.                                                                               | Student functions as a<br>part of multi-<br>disciplinary team, but<br>struggles to<br>demonstrate the<br>effectiveness.                                                                                                           | Student generally<br>effectively functions<br>as a part of multi-<br>disciplinary team, but<br>demonstrates a lack of<br>consistency.                                                                       | Student consistently<br>and effectively<br>functions as a part of<br>multi-disciplinary<br>team.                                                                    |       |

<u>Objective 4:</u> Continue professional development to address the need of applying principles of safety, health, and environment within a constantly changing and increasingly diverse environment.

Expected Outcomes: Students completing the Baccalaureate degree in OSH&E will demonstrate the ability to broaden education and life-long learning necessary to understand safety, health, and environment issues within a global and social context.

| Performance Criteria                                                                                                                                                                                                                                                                                                                      | Below Expectations<br>1                                                                                                                                                                                                                                                                       | Progressing to<br>Criteria<br>2                                                                                                                                                                                                                                                                                            | Meets Criteria<br>3                                                                                                                                                                                                                                                              | Exceeds Criteria<br>4                                                                                                                                                                                                                                                     | Score |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1. Students are encouraged to<br>become a member of ASSE<br>(American Society of Safety<br>Engineers) Southeastern<br>Louisiana University Student<br>Section and be actively<br>involved in the events and<br>activities organized by the<br>Student Section. At least 50%<br>of upper-level students are<br>ASSE members.               | Student shows no<br>interest in becoming a<br>member of ASSE<br>Southeastern<br>Louisiana University<br>Student Section and is<br>not involved in the<br>events and activities<br>organized by the<br>Student Section.<br>Lower than 50% of<br>upper-level students<br>are ASSE members.      | Student is interested in<br>becoming a member<br>of ASSE Southeastern<br>Louisiana University<br>Student Section and is<br>involved in the events<br>and activities<br>organized by the<br>Student Section, but<br>does not become a<br>member eventually.<br>Close to 50% of<br>upper-level students<br>are ASSE members. | Student becomes a<br>member of ASSE<br>Southeastern<br>Louisiana University<br>Student Section and is<br>generally actively<br>involved in the events<br>and activities<br>organized by the<br>Student Section. At<br>least 50% of upper-<br>level students are<br>ASSE members. | Student becomes a<br>member of ASSE<br>Southeastern<br>Louisiana University<br>Student Section and is<br>consistently actively<br>involved in the events<br>and activities<br>organized by the<br>Student Section. 75%<br>of upper-level<br>students are ASSE<br>members. |       |
| 2. Students are encouraged to<br>continue personal growth and<br>improvement by pursuing the<br>widely recognized certifications<br>including Certified Safety<br>Professional (CSP) and<br>Certified Industrial Hygienist<br>(CIH). As measured on the<br>Southeastern Alumni Survey,<br>50% of the OSH&E graduates<br>will become CSPs. | Student shows no<br>interest in continuing<br>personal growth and<br>improvement by<br>pursuing the widely<br>recognized<br>certifications including<br>CSP and CIH. As<br>measured on the<br>Southeastern Alumni<br>Survey, lower than<br>50% of the OSH&E<br>graduates will become<br>CSPs. | Student is interested in<br>continuing personal<br>growth and<br>improvement by<br>pursuing the widely<br>recognized<br>certifications including<br>CSP and CIH. As<br>measured on the<br>Southeastern Alumni<br>Survey, close to 50%<br>of the OSH&E<br>graduates will become<br>CSPs.                                    | Student takes early<br>steps to continue<br>personal growth and<br>improvement by<br>pursuing the widely<br>recognized<br>certifications including<br>CSP and CIH. As<br>measured on the<br>Southeastern Alumni<br>Survey, 50% of the<br>OSH&E graduates will<br>become CSPs.    | Student consistently<br>continues personal<br>growth and<br>improvement by<br>pursuing the widely<br>recognized<br>certifications including<br>CSP and CIH. As<br>measured on the<br>Southeastern Alumni<br>Survey, 75% of the<br>OSH&E graduates will<br>become CSPs.    |       |

### Appendix E

Occupational Safety, Health and Environment

#### Bachelor of Science in Occupational Safety, Health and Environment

The Bachelor of Science degree program in Occupational Safety, Health, and Environment (OSH&E) is designed to provide an academically comprehensive curriculum that prepares graduates with the ability and competency to become highly qualified safety, industrial hygiene, and environmental professionals. Curriculum sheets are available for this degree:

- 2005-2006 Curriculum Sheet
- 2006-2007 Curriculum Sheet
- 2007-2008 Curriculum Sheet
- 2008-2009 Curriculum Sheet
- 2009-2010 Curriculum Sheet

# Associate of Applied Science in Occupational Safety, Health and Environment

The Associate of Applied Science degree program in Occupational Safety, Health, and Environment (OSH&E) curriculum sheet is:

• 2009-2010 Curriculum Sheet

(See Our Brochure)

#### **OSH&E** Faculty

Full-time Members

Mr. Lawrence Mauerman, MAS, PE, CSP http://www2.selu.edu/Academics/Faculty/Imauerman/ Coordinator, OSH&E Program Specialty: Occupational Safety and Health, Industrial Hygiene, Safety Management

Dr. Lu Yuan, ScD http://www2.selu.edu/Academics/Faculty/Iyuan/ Assistant Professor Specialty: Occupational Ergonomics and Safety, Biomechanics Dr. Ephraim Massawe, ScD Assistant Professor Specialty: Industrial Hygiene, Environmental Health

Adjunct Instructors\*

Mr. Steven P. Pereira, CSP President, Professional Safety Associates, Inc.

Mr. Richard Matherne, CIH Senior Industrial Hygiene Advisor/Product Stewardship Albemarle Corporation

Mr. Wayne LaCombe, MSPH, CSP MOH – Industrial Hygiene ExxonMobil, Baton Rouge

Mr. William J. Kerr, CSP Eagle Environmental Services, Inc.

\*-Also on OSH&E Industrial Advisory Committee

#### **OSH&E Industrial Advisory Committee**

Southeastern's OSH&E Program Industrial Advisory Committee (IAC) consists of representatives from industry, government agencies, and professional safety, health, and environmental organizations from the greater New Orleans/Baton Rouge area. They meet regularly with Southeastern OSH&E faculty and administration to provide:

- Feedback on the effectiveness of the program in providing quality graduates to fill OSH&E positions in the area workforce;
- Advice on curriculum development to assure that the degree program maintains relevancy and meets the needs of area employers;
- Contact and coordination with area employers for program support in including, but not limited to: internships, plant field trips, guest speakers, equipment acquisition, scholarships, etc.;
- Assistance in preparation for program accreditation through the Accreditation Board for Engineering Technology (ABET).

#### **Internship Information**

Our students, as part of their curriculum, have served internships with outstanding regional and national employers in manufacturing, construction, chemical, refining, consulting companies and government agencies. We are grateful for the cooperation of these organizations. Companies who desire an OSH&E intern please contact Dr. Peter Territo at 985-549-2071 or pterrito@selu.edu for more information!

#### **Scholarships**

Both departmental & external scholarships are available. In particular, students in the OSH&E program are highly encouraged to apply for the following scholarships:

Linda Sullivan Scholarship http://www.selu.edu/acad\_research/depts/cs\_it/scholarships/

Greater Baton Rouge Chapter – Don Jones Excellence in Safety Scholarship http://www.asse.org/foundation/scholarships/scholarships.php#

Appendix F

YEAR 2009-2010

| ADVISOR:                                                                                                                                                                                                                      | STUDENT PHONE                                                                                                                                                                                                             | NUMBER:                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ASS                                                                                                                                                                                                                           | RICULUM IN INDUSTRIAL TECHNO<br>SOCIATE OF APPLIED SCIENCE DE<br>SAFETY, HEALTH & ENVIRONMEN                                                                                                                              | GREE                                                                                                                                                                                                                                                                                      |
| COMPUTER SCIENCE (3 hrs)         CMPS 173       3         ENGL 101       3         ENGL 102 □       3         Proficiency       3         MUST show proficiency         MUST make a minimum grade of "C" in all major courses | ⊥ Occupational Safety. Health. &<br>Environment (24 hrs)<br>⊥ OSHE 1113<br>⊥ OSHE 1213<br>⊥ OSHE 1213<br>⊥ OSHE 2313<br>⊥ OSHE 2313<br>⊥ OSHE 2513<br>⊥ OSHE 2613<br>MATH 161 □3<br>MATH 1623<br>MATH 2413<br>Proficiency | NATURAL SCIENCE (12 hrs)         GBIO 151       3         BIOL 152       1         CHEM 101       3         CLAB 103       1         PHYS 191       3         PLAB 193       1         OTHER (6-9 hrs)       3         SE 101       0-3         PSYC 101       3         COMM 211       3 |
|                                                                                                                                                                                                                               | NO 100-LEVEL COURSE WILL BE<br>ACCEPTED WITHOUT APPROVAL<br>OF THE DEPARTMENT HEAD.<br>APPROVED:                                                                                                                          | (T) = Course Taking this<br>Semester<br>* ( ) = Transfer Credits                                                                                                                                                                                                                          |

TOTAL SEMESTER HOURS: 60 - 63 TOTAL MAJOR HOURS: 24 (NOTE: ½ of all major hours must be taken at SLU.)

ADVISOR: \_\_\_\_\_\_ STUDENT PHONE NUMBER: \_\_\_\_\_

## CURRICULUM IN OCCUPATIONAL SAFETY, HEALTH, AND ENVIRONMENT BACHELOR OF SCIENCE DEGREE

| NAME:                                                                                                                                                                                                                 | ⊥ <u>Industrial Technology (6 hrs)</u> ⊥ IT 2423     ⊥ IT 391 or 4923      ⊥ <u>Occupational Safety, Health,</u> <u>and Environment (42 hrs)</u> ⊥ OSHE 1113 | W#:                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ENGL 101 3<br>ENGL 102 ■ 3<br>ENGL 230, 231,<br>or 232 3<br>ENGL 322 3<br>Proficiency                                                                                                                                 |                                                                                                                                                              | GBIO 151       3         BIOL 152       1         CHEM 101       3         CLAB 103       1         PHYS 191       3         PLAB 193       1         CHEM 102       3         CLAB 104       1         ZOO 241       4         CHEM 261       3 |
| <ul> <li>MUST show proficiency</li> <li>MUST make a minimum grade<br/>of "C" in all major courses</li> <li>Students must schedule their<br/>professional electives with the<br/>approval of their advisor.</li> </ul> |                                                                                                                                                              | OTHER (12-15 hrs)           SE 101                                                                                                                                                                                                               |
| Professional electives are to be<br>selected from the following two<br>groups and at least ONE<br>course must be from Group I.                                                                                        | ⊥ 3<br>⊥ 3<br>NO 100-LEVEL COURSE                                                                                                                            | ART, DNCE, MUS,<br>or THEA3                                                                                                                                                                                                                      |
| Group I - OSHE Courses<br>311, 322, 323, 441, 451<br>Group II - Other Courses<br>IT 264, IT 322, ACCT 200,<br>CJ 312, CJ 411, GBIO 377,<br>HS 360, HS 362                                                             | WILL BE ACCEPTED AS A<br>PROFESSIONAL ELECTIVE<br>WITHOUT APPROVAL OF<br>THE DEPARTMENT HEAD.<br>APPROVED:                                                   | <ul> <li>(T) = Course Taking this<br/>Semester</li> <li>* ( ) = Transfer Credits</li> </ul>                                                                                                                                                      |

TOTAL SEMESTER HOURS: 122-125 TOTAL MAJOR HOURS: 57

(NOTE: 1/2 of all major hours must be taken at SLU.)

### 4-YEAR BACHELOR OF SCIENCE IN OCCUPATIONAL SAFETY, HEALTH, AND ENVIRONMENT (OSH&E)

### **Required OSHE Courses**

**111. Introduction to Occupational Safety and Health.** Credit 3 hours. This course introduces general safety and health concepts. Major topics include: occupational safety and health terms, historical developments, program concepts and terms, legislative overview, including worker's compensation law, problem identification, hazard recognition, evaluation and control concepts, and an introduction to measurement and evaluation.

**112. Design of Hazard Controls.** Credit 3 hours. Prerequisites: Current enrollment or prior credit for OSHE 111. This course studies the application of scientific and engineering principles and methods to achieve optimum safety and health conditions through the analysis and design of process, equipment, products, facilities, operations, and environments. Major topics include product design, plant layout, construction, maintenance, pressure vessels and piping, mechanical systems, materials handling and storage, ventilation, power tools, electrical equipment, and transportation vehicles and systems.

**121. Safety and Health Program Management and Administration.** Credit 3 hours. Prerequisite: Enrollment in or prior credit for OSHE 111. This course studies the application of proven management principles and techniques to the management of safety and health and loss control programs. Major topics will include; planning, organizing, budgeting, resourcing, operating, implementing, and evaluating safety functions.

**141. [241]. Principles of Industrial Hygiene & Toxicology.** Credit 3 hours. This course introduces the basic industrial hygiene principles of anticipation, recognition, evaluation, and control of workplace conditions as they relate to occupational health. Major topics include: a variety of occupational hazards including air contaminants, chemical hazards, biological hazards, and physical hazards.

**231. Safety Laws, Regulations, and Standards.** Credit 3 hours. This course studies the development processes, sources, and applications for minimum safety requirements established by laws, regulations, standards, and codes. Major topics will include OSHA General Industry and Construction Standards, the enforcement of safety standards, and the role of NIOSH and ACGIH in the safety movement.

**242. Ergonomics.** Credit 3 hours. Prerequisite: Enrollment in or prior credit for Mathematics 241 and OSHE 141[OSHE 241]. This course explores ergonomic design principles which involve the planning and adapting of equipment and tasks to promote the comfort and efficiency of workers. Major topics include: human characteristics, physiology, and anthropometry and the application of these principles to workstations, tool design, and material handling procedures.

**251. Environmental Laws and Regulations.** Credit 3 hours. This course is an introduction to federal and state environmental regulations which impact industry. Major topics include hazardous waste management, disposal and cleanup, prevention of air, water, and soil contamination and environmental program management.

**261. Fire Protection and Prevention.** Credit 3 hours. This course introduces the basic principles of fire and fire prevention in the work place. Major topics include: evaluating existing and planned facilities from a fire and explosion standpoint, and applying the basic principles of hazard recognition, evaluation, and control when developing fire prevention and emergency response activities.

**341. Field Methods of Industrial Hygiene and Toxicology.** Credit 3 hours. Prerequisites: Mathematics 241 and OSHE 141[OSHE 241]. This course presents an examination of the methods used by the industrial hygienist for the identification and assessment of health hazards in the workplace. Major topics include: establishment and use of methodologies to sample and evaluate exposures to air contaminants (gases, vapors, aerosols, and particulates), microorganisms and allergens, noise, heat, and cold stress, electrical and magnetic radiation, and ionizing and ultraviolet radiation. The course also includes equipment use, maintenance, and calibration.

**381. [281]. Safety in Chemical and Process Industries.** Credit 3 hours. Prerequisites: Enrollment in or prior credit for Chemistry 101 and Physics 191. The course introduces the fundamentals of chemical and process industry safety. Major topics include: toxic, fire, and pressure hazards inherent in chemical plants and petroleum refineries, and the methods used to identify, assess, and eliminate those hazards. It also introduces students to federal safety regulations for proves safety management.

**382. [282]. Construction Safety.** Credit 3 hours. Prerequisites: Enrollment in or prior credit for OSHE 111 and OSHE 121. The course studies the application of management principles, communication and human relations factors, safety/health rules, industry and federal standards, accident investigation, and the job planning phases in the construction environment.

**421.** [321]. Measurement of Safety Performance and Accident Investigation and Analysis. Credit 3 hours. Prerequisite: Enrollment in or prior credit for Math 241. This course presents methods to objectively evaluate a company's safety progress. The course covers two distinct topics: (1) measuring safety performance, and (2) incident investigation and analysis. The first segment of the course addresses ways of measuring safety performance objectively and subjectively using safety audits, inspections, observations, performance appraisal systems, and injury/illness statistics. The second segment of the course addresses the causes of accidents, systematic ways of conducting investigations, documenting the findings, causes and other significant data, and drafting recommendations.

**424. [324]. System Safety Methodologies.** Credit 3 hours. Prerequisites: Mathematics 241, OSHE 111, and OSHE 121. The course presents the concepts of Risk Management and Loss Control through the use of systematic approaches to hazard anticipation, identification, evaluation and control. Major topics include: an introduction to qualitative methods of evaluating the hazards and risks associated with systems, processes, equipment, and other entities. It also includes a review of techniques for mitigating or managing identified risks.

**471. [371]. Education and Training Methods for Occupational Safety and Health.** Credit 3 hours. This course introduces the concepts of adult training and education with emphasis on occupational safety and health. Major topics include: instructional system design, including performing a training needs assessment tasks analysis, program design goals and objectives, performance evaluation, delivery methods and media; computer-based training methods; systems to manage costs; and record keeping.

### **Existing Professional Elective OSHE Courses**

**311. Safety & Health Program Development.** Credit 3 hours. This course presents the key elements necessary to develop or to assess occupational safety and health programs. Major topics include management commitment and employee involvement; worksite analysis, hazard correction and control; training, and evaluation.

**322. Behavioral Aspects of Safety.** Credit 3 hours. Prerequisite: Psychology 101. This course will introduce students to the application of scientific research based principles and methods to bring about change in the work culture through attitude, behavior, and environmental conditions. Specific topics will include traditional approaches and philosophies for improving safety, environmental effects, incentives, developing and building cultural change, identifying critical behavior, developing checklists, giving and receiving recognition and measuring performance.

**323. Product Safety and Liability.** Credit 3 hours. This course examines the importance of considering the safety of a product in its ultimate use. Major topics include: aspects of product design, intended and improper use, and potential injury mechanisms. It uses classic product liability case studies to provide practical application of the principles learned. It also studies manufacturer liabilities through injury tort actions.

**441. Industrial Toxicology.** Credit 3 hours. Prerequisites: General Biology 151, Zoology 241, and OSHE 141[OSHE 241]. This course examines the effects of industrial toxicants on the human body. Major topics include: the discipline of toxicology, acute and chronic exposures and effects, routes and characteristics of exposures, target organs and systems, dose and response, and carcinogenesis. It also discusses the toxic characteristics of various classes of toxic materials.

**451. Hazardous Materials Management.** Credit 3 hours. Prerequisite: OSHE 251. This course examines acceptable policies, procedures, and methods for the handling of oil and hazardous wastes produced by industry. Major topics include: advanced aspects of risk assessment, applicable environmental legislation, waste characterization and site assessment, waste minimization and recovery, chemical, physical, and biological waste treatment, thermal waste treatment, landfill disposal and injection well disposal. It also includes a section on the transportation of hazardous wastes.

### **Proposed Additional Professional Electives**

### **INDUSTRIAL TECHNOLOGY (IT)**

**264. Industrial Fluid Power.** Credit 3 hours. Theory and practice of hydraulic and pneumatic power for industrial production. Functional examination of units: pumps, valves, boosters, etc. Simulated systems used to emphasize design and other industrial materials. Two hours of lecture and two hours of laboratory per week. Laboratory fee: \$45.00.

**322. Materials Science and Metallurgy.** Credit 3 hours. Prerequisite: Industrial Technology 242. Study of the major materials used in industrial engineering, considering structure and properties, testing methods (destructive and nondestructive), and microscopic examination. Two hours of lecture and two hours of laboratory a week. Laboratory fee: \$45.00.

### ACCOUNTING (ACCT)

**200. Introduction to Financial Accounting.** Credit 3 hours. Prerequisite: Sophomore standing. An introduction to corporate financial accounting systems including preparing, interpreting, and using financial statements.

### **CRIMINAL JUSTICE (CJ)**

**312. Private and Public Sector Security.** Credit 3 hours. Prerequisites: Completion of CJ 101, 201, 202, 204, and 205 or permission of Department Head. This course provides an overview of the vulnerability of business, industrial and government sectors to criminal infiltration and compromise from both internal and external sources, with special emphasis on threats to cyber-security, and protection of physical assets and employees/agents.

**411. International Crime and Terrorism.** Credit 3 hours. Prerequisites: Completion of CJ 101, 201, 202, 204, and 205 and junior/senior standing, or permission of Department Head. This course provides an overview of threats to internal security including organized criminal enterprises, and state and non-state terror activities.

### **HEALTH STUDIES (HS)**

**360. Introduction to Epidemiology.** Credit 3 hours. Prerequisites: HS 132 or 133, MATH 160 or 161, Math 241, and junior standing or permission of department head. An introduction to the study of distribution of health events in human populations. Methods of assessing health states in populations by the use of morbidity and mortality data. Includes disease tracking and control methods for use in health care decisions. Major types of epidemiological investigations are also studied.

**362. Promoting Health in the Worksite.** Credit 3 hours. Prerequisites: HS 132 or 133, 162 or 251 or 252, junior standing or permission of department head. Introduction to the design and implementation of health programs in a variety of worksite settings. Attention to concerns of administrative and staff support, recidivism, specific interventions, and policy.

### **GENERAL BIOLOGY (GBIO & BIOL)**

**377. Applied Biostatistics.** Credit 4 hours. Prerequisite: Mathematics 161 or consent of the Department Head. Basic concepts of biostatistics and sampling strategy; measures of central tendency and dispersion; Z, t, chi-square, and F distributions; test of hypothesis, error rates, and maximizing power; analysis of variance and regression. Strong emphasis on, and many examples of, field and laboratory oriented biological research problems. Three hours of lecture and two hours of laboratory per week.